磁悬浮列车原理是什么

磁悬浮列车原理

,从20世纪60年代开始,磁悬浮技术为世界上科技先进国家所注目,各国都投入了大量的人力和物力。由于时速在300公里以上的高速列车采用的是传统的车轮一钢轨粘着方式,运行缺陷很多,因而促使科技界积极探索利用磁浮原理。但20多年来,仍然停留在很短距离的试验阶段。随着超导技术、线性牵引电机的迅速发展,磁悬浮列车正在加速走向实用化。1987年,日本成功地使用两辆连接在一起的磁悬浮轨创造了时速40公里的世界纪录。经过近几年的努力,自1993年开始,磁悬浮列车采取了实用化的举措。德国联邦政府1993年12月正式决定修建柏林至汉堡的284公里磁浮列车铁路,列车由4辆客车组成,座位332个,时速320公里,两市之间旅行时间53分钟,总投资2亿西德马克,预计2003年投入运营。美国已于1994年4月动工修建第一条自佛罗里达州的奥兰多机场至迪斯尼乐园长达21.7公里的市部短途磁浮列车线,投资为6.22亿美元。另外两条线路是肯尼迪航天中心至州际展览馆和匹兹堡国际机场至市区中。日本在宫崎试验中心进行了多年磁浮列车试验以后,决定在山梨县新建一条43公里的实用线路,作为磁浮列车试运线。这些进入实用性的科研项目,将为21世纪高速铁路的发展提供更方阔的前景。与现有的地面车辆相比,磁浮列车高速平稳,能耗低、电力驱动无污染,安全可靠,线路上可少开或不开隧道。这些不可比拟的优势,使交通运输有了划时代的突破。目前,日本研制的磁浮列车,其车上励磁使用了永久磁石,是迄今所研制的地上一次式线性尾动机驱动车辆的代表。过去日本和德国都曾研制出高速运动装置,但是作为车上的励磁采用的却是普通电磁体。如今日本研制的高速运动装置,作为车上的励磁,采用的是超导电磁体。超导电磁体重量轻,强度高,但必须使用昂贵的液体氦来,维持极低的超导临界温度;而普通电磁体则需要不断地供给励磁电流。相比之下,悬浮列车采用永久磁体后,使得车辆构造简单了。这种悬浮列车的驱动和制动力来自直线电动机的电磁力。这种电磁力是靠电流流经导体产生的磁力线与磁体的磁力线相互作用而产生的。驱动系统使用的是可变频率的矩形波交流电。车辆的运行是靠控制电磁轨道上通过的电流实现的。为避免电力损失,要搞馈电分区控制,即把电磁轨道分成若干区间,对应列车运行顺次转换通电区间。由于采用了永久磁体,悬浮列车不必为消磁担心。即使不用机械制动作备用,依据地上线圈的短路,电制动就足够了,整体系统也能更简捷。对列车闭塞的基本想法与普通铁路相同。但地上一次式线性电动机驱动车由于系电力控制,可以准确把握列车的绝对位置,可引入近似移动闭塞的方法,从而实现高密度运转,由此又可提高地上设施的利用率,即使是小单位编成的列车也可确保较大输送能力。由于是小型车辆,有利于通过曲线,而且爬坡性能好,同时地上设施的轨道、电力设施等都可小型化。这个系统由于在线性电动机驱动车长期研究的基础上,引进了强力永久磁体后,使这个领域的研制工作进入了新阶段,它对车辆构造、轨道构造、控制系统等整体研制能起很大作用。这些进入实用性的科研项目,将为悬浮列车的日臻完善奠定扎实的基础,也将为21世纪超高速铁路的发展提供更广阔的前景。,

磁悬浮列车是一种现代高科技轨道交通工具,它通过电磁力实现列车与轨道之间的无接触的悬浮和导向,再利用直线电机产生的电磁力牵引列车运行。

磁悬浮列车目前可分为两种:一种是电磁悬浮列车;一种是超导磁悬浮列车。

不论是电磁悬浮还是超导悬浮,都利用的是电励磁,然后利用磁场的吸引或者排斥作用。这个和我们平时生活中所说所用的磁铁(永磁体)关系不是太大。

电磁悬浮列车(吸引)电磁悬浮列车是利用电使电磁铁产生铁磁性,利用电磁铁的吸引使轨道和车厢的分离,通过改变励磁电流来控制悬浮间隙大小。上海的磁悬浮列车就是这个原理。

超导磁悬浮列车(排斥)超导磁悬浮列车利用的是电产生的磁和处于超导态的超导体之间的斥力使车厢悬浮。超导体在超导态具有完全抗磁性,可以在磁场中浮起来。完全抗磁性其实是超导体在磁场中感应出超导电流,电流产生磁场抵消外场。

扩展资料

由于磁悬浮列车具有快速、低耗、环保、安全等优点,因此前景十分广阔。常导磁悬浮列车可达400至500公里/小时,超导磁悬浮列车可达500至600公里/小时。它的高速度使其在1000至1500公里之间的旅行距离中比乘坐飞机更优越。

由于没有轮子、无摩擦等因素,它比目前最先进的高速火车少耗电30%。在500公里/小时速度下,每座位/公里的能耗仅为飞机的1/3至1/2,比汽车也少耗能30%。因无轮轨接触,震动小、舒适性较好,可是颠波大对车辆和路轨的维修费用也要求极高。

磁悬浮列车在运行时不与轨道发生摩擦,发出的噪音较低。磁悬浮列车一般以5米以上的高架通过平地或翻越山丘,从而不可避免开山挖沟对生态环境造成的破坏。磁悬浮列车在路轨上运行,按飞机的防火标准实行配置。

参考资料来源:百度百科-磁悬浮列车

,磁悬浮列车原理:  由于磁铁有同性相斥和异性相吸两种形式,故磁悬浮列车也有两种相应的形式:一种是利用磁铁同性相斥原理而设计的电磁运行系统的磁悬浮列车,它利用车上超导体电磁铁形成的磁场与轨道上线圈形成的磁场之间所产生的相斥力,使车体悬浮运行的铁路;另一种则是利用磁铁异性相吸原理而设计的电动力运行系统的磁悬浮列车,它是在车体底部及两侧倒转向上的顶部安装磁铁,在T形导轨的上方和伸臂部分下方分别设反作用板和感应钢板,控制电磁铁的电流,使电磁铁和导轨间保持10—15毫米的间隙,并使导轨钢板的排斥力与车辆的重力平衡,从而使车体悬浮于车道的导轨面上运行。  通俗的讲就是,在位于轨道两侧的线圈里流动的交流电,能将线圈变为电磁体。由于它与列车上的超导电磁体的相互作用,就使列车开动起来。列车前进是因为列车头部的电磁体(N极)被安装在靠前一点的轨道上的电磁体(S极)所吸引,并且同时又被安装在轨道上稍后一点的电磁体(N极)所排斥。当列车前进时,在线圈里流动的电流流向就反转过来了。其结果就是原来那个S极线圈,现在变为N极线圈了,反之亦然。这样,列车由于电磁极性的转换而得以持续向前奔驰。根据车速,通过电能转换器调整在线圈里流动的交流电的频率和电压。  稳定性由向系统来控制。“常导型磁吸式”导向系统,是在列车侧面安装一组专门用于导向的电磁铁。列车发生左右偏移时,列车上的导向电磁铁与导向轨的侧面相互作用,产生排斥力,使车辆恢复正常位置。列车如运行在曲线或坡道上时,控制系统通过对导向磁铁中的电流进行控制,达到控制运行目的。  “常导型”磁悬浮列车及轨道和电动机的工作原理完全相同。只是把电动机的“转子”布置在列车上,将电动机的“定子”铺设在轨道上。通过“转子”,“定子”间的相互作用,将电能转化为前进的动能。我们知道,电动机的“定子”通电时,通过电磁感应就可以推动“转子”转动。当向轨道这个“定子”输电时,通过电磁感应作用,列车就像电动机的“转子”一样被推动着做直线运动。

欢迎分享,转载请注明来源:艾迪网

原文地址:http://iiiiidea.com/baike/434981b2g22.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-10-28
下一篇2023-10-28

发表评论

登录后才能评论

评论列表(0条)

    保存